Carl Sagan "Can We Know the Universe? Reflections on a Grain of Salt"

Can We Know the Universe? Reflections on a Grain of Salt
by Carl Sagan
The following excerpt was published in Broca's Brain (1979)
"Nothing is rich but the inexhaustible wealth of nature. She shows us only surfaces, but
she is a million fathoms deep." — Ralph Waldo Emerson


Science is a way of thinking much more than it is a body of knowledge. Its goal is to find out how the world works, to seek what regularities there may be, to penetrate the connections of things—from subnuclear particles, which may be the constituents of all matter, to living organisms, the human social community, and thence to the cosmos as a whole. Our intuition is by no means an infallible guide. Our perceptions may be distorted by training and prejudice or merely because of the limitations of our sense organs, which, of course, perceive directly but a small fraction of the phenomena of the world. Even so straightforward a question as whether in the absence of friction a pound of lead falls faster than a gram of fluff was answered incorrectly by Aristotle and almost everyone else before the time of Galileo. Science is based on experiment, on a willingness to challenge old dogma, on an openness to see the universe as it really is. Accordingly, science sometimes requires courage—at the very least the courage to question the conventional wisdom.


Beyond this the main trick of science is to really think of something: the shape of clouds and their occasional sharp bottom edges at the same altitude everywhere in the sky; the formation of the dewdrop on a leaf; the origin of a name or a word—Shakespeare, say, or "philanthropic"; the reason for human social customs—the incest taboo, for example; how it is that a lens in sunlight can make paper burn; how a "walking stick" got to look so much like a twig; why the Moon seems to follow us as we walk; what prevents us from digging a hole down to the center of the Earth; what the definition is of "down" on a spherical Earth; how it is possible for the body to convert yesterday's lunch into today's muscle and sinew; or how far is up—does the universe go on forever, or if it does not, is there any meaning to the question of what lies on the other side? Some of these questions are pretty easy. Others, especially the last, are mysteries to which no one even today knows the answer. They are natural questions to ask. Every culture has posed such questions in one way or another. Almost always the proposed answers are in the nature of "Just So Stories," attempted explanations divorced from
experiment, or even from careful comparative observations.

But the scientific cast of mind examines the world critically as if many alternative worlds might exist, as if other things might be here which are not. Then we are forced to ask why what we see is present and not something else. Why are the Sun and the Moon and the planets spheres? Why not pyramids, or cubes, or dodecahedra? Why not irregular, jumbly shapes? Why so symmetrical worlds? If you spend any time spinning hypotheses, checking to see whether they make sense, whether they conform to what else we know, thinking of tests you can pose to substantiate or deflate your hypotheses, you will find yourself doing science. And as you come to practice this habit of thought more and more you will get better and better at it. To penetrate into the heart of the thing—even a little thing, a blade of grass, as Walt Whitman said—is to experience a kind of exhilaration that, it may be, only human beings of all the beings on this planet can feel. We are an intelligent species and the use of our intelligence quite properly gives us pleasure. In this respect the brain is like a muscle. When we think well, we feel good. Understanding is a kind of ecstasy.


But to what extent can we really know the universe around us? Sometimes this question is posed by people who hope the answer will be in the negative, who are fearful of a universe in which everything might one day be known. And sometimes we hear pronouncements from scientists who confidently state that everything worth knowing will soon be known—or even is already known—and who paint pictures of a Dionysian or Polynesian age in which the zest for intellectual discovery has withered, to be replaced by a kind of subdued languor, the lotus eaters drinking fermented coconut milk or some other mild hallucinogen. In addition to maligning both the Polynesians, who were intrepid explorers (and whose brief respite in paradise is now sadly ending), as well as the inducements to intellectual discovery provided by some hallucinogens, this contention turns out to be trivially mistaken.


Let us approach a much more modest question: not whether we can know the universe or the Milky Way Galaxy or a star or a world. Can we know, ultimately and in detail, a grain of salt? Consider one microgram of table salt, a speck just barely large enough for someone with keen eyesight to make out without a microscope. In that grain of salt there are about 1016 sodium and chlorine atoms. That is a 1 followed by 16 zeros, 10 million billion atoms. If we wish to know a grain of salt we must know at least the three-dimensional positions of each of these atoms. (In fact, there is much more to be known—for example, the nature of the forces between the atoms—but we are making only a modest calculation.) Now, is this number more or less than a number of things which the brain can know?


How much can the brain know? There are perhaps 1011 neurons in the brain, the circuit elements and switches that are responsible in their electrical and chemical activity for the functioning of our minds. A typical brain neuron has perhaps a thousand little wires, called dendrites, which connect it with its fellows. If, as seems likely, every bit of information in the brain corresponds to one of these connections, the total number of things knowable by the brain is no more than 1014, one hundred trillion. But this number is only one percent of the number of atoms in our speck of salt.


So in this sense the universe is intractable, astonishingly immune to any human attempt at full knowledge. We cannot on this level understand a grain of salt, much less the universe. But let us look a little more deeply at our microgram of salt. Salt happens to be a crystal in which, except for defects in the structure of the crystal lattice, the position of every sodium and chlorine atom is predetermined. If we could shrink ourselves into this crystalline world, we would rank upon rank of atoms in an ordered array, a regularly alternating structure—sodium, chlorine, sodium, chlorine, specifying the sheet of atoms we are standing on and all the sheets above us and below us. An absolutely pure crystal of salt could have the position of every atom specified by something like 10 bits of information. This would not strain the information-carrying capacity of the brain.


If the universe had natural laws that governed its behavior to the same degree of regularity that determines a crystal of salt, then, of course, the universe would be knowable. Even if there were many such laws, each of considerable complexity, human beings might have the capability to understand them all. Even if such knowledge exceeded the information-carrying capacity of the brain, we might store the additional information outside our bodies—in books, for example, or in computer memories—and still, in some sense, know the universe.


Human beings are, understandably, highly motivated to find regularities, natural laws. The search for rules, the only possible way to understand such a vast and complex universe, is called science. The universe forces those who live in it to understand it. Those creatures who find everyday experience a muddled jumble of events with no predictability, no regularity, are in grave peril. The universe belongs to those who, at least to some degree, have figured it out.It is an astonishing fact there are laws of nature, rules that summarize conveniently—not just qualitatively but quantitatively—how the world works. We might imagine a universe in which here are no such laws, in which the 1080 elementary particles that make up a universe like our own behave with utter and uncompromising abandon. To understand such a universe we would need a brain at least as massive as the universe. It seems unlikely that such a universe couldhave life and intelligence, because beings and brains require some degree of internal stability and order. But even if in a much more random universe there were such beings with an intelligence much greater than our own, there could not be much knowledge, passion or
joy.


Fortunately for us, we live in a universe that has at least important parts that are knowable. Our common-sense experience and our evolutionary history have prepared us to understand something of the workaday world. When we go into other realms, however, common sense and ordinary intuition turn out to be highly unreliable guides. It is stunning that as we go close to the speed of light our mass increases indefinitely, we shrink towards zero thickness in the direction of motion, and time for us comes as near to stopping as we would like. Many people think that this is silly, and every week or two I get a letter from someone who complains to me about it. But it is a virtually certain consequence not just of experiment but also of Albert Einstein's brilliant analysis of space and time called the Special Theory of Relativity. It does not matter that these effects seem unreasonable to us. We are not in the habit of traveling close to the speed of light. The testimony of our common sense is suspect at high velocities.


Or consider an isolated molecule composed of two atoms shaped something like a dumbbell—a molecule of salt, it might be. Such a molecule rotates about an axis through the line connecting the two atoms. But in the world of quantum mechanics, the realm of the very
small, not all orientations of our dumbbell molecule are possible. It might be that the molecule could be oriented in a horizontal position, say, or in a vertical position, but not at many angles in between. Some rotational positions are forbidden. Forbidden by what? By the laws of nature. The universe is built in such a way as to limit, or quantise, rotation. We do not experience this directly in everyday life; we would find it startling as well as awkward in sitting-up exercises, to find arms out stretched from the sides or pointed up to the skies permitted but many intermediate positions forbidden. We do not live in the world of the small, on the scale of 10-13 centimeters, in the realm where there are twelve zeros between the decimal place and the one. Our common-sense intuitions do not count. What does count is experiment—in this case observations from the far infrared spectra of molecules. They show molecular rotation to be quantized.


The idea that the world places restrictions on what humans might do is frustrating. Why shouldn't we be able to have intermediate rotational positions? Why can't we travel faster than the speed of light? But so far as we can tell, this is the way the universe is constructed. Such prohibitions not only press us toward a little humility; they also make the world more knowable. Every restriction corresponds to a law of nature, a regulation of the universe. The more restrictions there are on what matter and energy can do, the more knowledge human beings can attain. Whether in some sense the universe is ultimately knowable depends not only on how many natural laws there are that encompass widely divergent phenomena, but also on whether we have the openness and the intellectual capacity to understand such laws. Our formulations of the regularities of nature are surely dependent on how the brain is built,
but also, and to a significant degree, on how the universe is built.


For myself, I like a universe that includes much that is unknown and, at the same time, much that is knowable. A universe in which everything is known would be static and dull, as boring as the heaven of some weak-minded theologians. A universe that is unknowable is no fit place for a thinking being. The ideal universe for us is one very much like the universe we inhabit. And I would guess that this is not really much of a coincidence.


( Carl Sagan, "Can We Know the Universe?: Reflections on a Grain of Salt;" from Broca's Brain: Reflections on the Romance of
Science, New York: Random House, 1979, pp. 13-18. )

Brian Doyle "Joyas Volardores"

WordTheatre introduced me to this beautiful essay.

By Brian Doyle

Consider the hummingbird for a long moment. A hummingbird’s heart beats ten times a second. A hummingbird’s heart is the size of a pencil eraser. A hummingbird’s heart is a lot of the hummingbird. Joyas volardores, flying jewels, the first white explorers in the Americas called them, and the white men had never seen such creatures, for hummingbirds came into the world only in the Americas, nowhere else in the universe, more than three hundred species of them whirring and zooming and nectaring in hummer time zones nine times removed from ours, their hearts hammering faster than we could clearly hear if we pressed our elephantine ears to their infinitesimal chests.


Each one visits a thousand flowers a day. They can dive at sixty miles an hour. They can fly backwards. They can fly more than five hundred miles without pausing to rest. But when they rest they come close to death: on frigid nights, or when they are starving, they retreat into torpor, their metabolic rate slowing to a fifteenth of their normal sleep rate, their hearts sludging nearly to a halt, barely beating, and if they are not soon warmed, if they do not soon find that which is sweet, their hearts grow cold, and they cease to be. Consider for a moment those hummingbirds who did not open their eyes again today, this very day, in the Americas: bearded helmet-crests and booted racket-tails, violet-tailed sylphs and violet-capped woodnymphs, crimson topazes and purple-crowned fairies, red-tailed comets and amethyst woodstars, rainbow-bearded thornbills and glittering-bellied emeralds, velvet-purple coronets and golden-bellied star-frontlets, fiery-tailed awlbills and Andean hillstars, spatuletails and pufflegs, each the most amazing thing you have never seen, each thunderous wild heart the size of an infant’s fingernail, each mad heart silent, a brilliant music stilled.


Hummingbirds, like all flying birds but more so, have incredible enormous immense ferocious metabolisms. To drive those metabolisms they have race-car hearts that eat oxygen at an eye-popping rate. Their hearts are built of thinner, leaner fibers than ours. Their arteries are stiffer and more taut. They have more mitochondria in their heart muscles—anything to gulp more oxygen. Their hearts are stripped to the skin for the war against gravity and inertia, the mad search for food, the insane idea of flight. The price of their ambition is a life closer to death; they suffer more heart attacks and aneurysms and ruptures than any other living creature. It’s expensive to fly. You burn out. You fry the machine. You melt the engine. Every creature on earth has approximately two billion heartbeats to spend in a lifetime. You can spend them slowly, like a tortoise and live to be two hundred years old, or you can spend them fast, like a hummingbird, and live to be two years old.


The biggest heart in the world is inside the blue whale. It weighs more than seven tons. It’s as big as a room. It is a room, with four chambers. A child could walk around it, head high, bending only to step through the valves. The valves are as big as the swinging doors in a saloon. This house of a heart drives a creature a hundred feet long. When this creature is born it is twenty feet long and weighs four tons. It is waaaaay bigger than your car. It drinks a hundred gallons of milk from its mama every day and gains two hundred pounds a day, and when it is seven or eight years old it endures an unimaginable puberty and then it essentially disappears from human ken, for next to nothing is known of the the mating habits, travel patterns, diet, social life, language, social structure, diseases, spirituality, wars, stories, despairs and arts of the blue whale. There are perhaps ten thousand blue whales in the world, living in every ocean on earth, and of the largest animal who ever lived we know nearly nothing. But we know this: the animals with the largest hearts in the world generally travel in pairs, and their penetrating moaning cries, their piercing yearning tongue, can be heard underwater for miles and miles.


Mammals and birds have hearts with four chambers. Reptiles and turtles have hearts with three chambers. Fish have hearts with two chambers. Insects and mollusks have hearts with one chamber. Worms have hearts with one chamber, although they may have as many as eleven single-chambered hearts. Unicellular bacteria have no hearts at all; but even they have fluid eternally in motion, washing from one side of the cell to the other, swirling and whirling. No living being is without interior liquid motion. We all churn inside.


So much held in a heart in a lifetime. So much held in a heart in a day, an hour, a moment. We are utterly open with no one in the end—not mother and father, not wife or husband, not lover, not child, not friend. We open windows to each but we live alone in the house of the heart. Perhaps we must. Perhaps we could not bear to be so naked, for fear of a constantly harrowed heart. When young we think there will come one person who will savor and sustain us always; when we are older we know this is the dream of a child, that all hearts finally are bruised and scarred, scored and torn, repaired by time and will, patched by force of character, yet fragile and rickety forevermore, no matter how ferocious the defense and how many bricks you bring to the wall. You can brick up your heart as stout and tight and hard and cold and impregnable as you possibly can and down it comes in an instant, felled by a woman’s second glance, a child’s apple breath, the shatter of glass in the road, the words I have something to tell you, a cat with a broken spine dragging itself into the forest to die, the brush of your mother’s papery ancient hand in the thicket of your hair, the memory of your father’s voice early in the morning echoing from the kitchen where he is making pancakes for his children.

Diatoms

Diatoms are algae, tiny single cell creatures found in pools and ponds and oceans. They are enclosed in a cell wall of silica which are mostly bilaterally symmetric.  Though there is a slight asymmetry, so that one side might fit inside the other.

Remarkably they produce dimethyl sulfide which then forms tiny sulfate aerosols which are among the tiny particles that encourage water vapour to condense in our skies and fall as rain.  It is a beautiful idea that through this process these tiny creatures call the water that has escaped them back to earth.

Since Victorian times, we've been arranging these tiny creatures.  The middle three images are by a person called W M Grant.  I am particularly partial to his or her arrangements.